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ABSTRACT: In this work, the effect of pseudoelastic response of shape memory alloys
(SMAs) on passive vibration isolation has been investigated. This study has been conducted by
developing, modeling, and experimentally validating a SMA-based vibration isolation device.
This device consists of layers of preconstrained SMA tubes undergoing pseudoelastic
transformations under transverse dynamic loading. These SMA tubes are referred to as SMA
spring elements in this study. To accurately model the nonlinear hysteretic response of SMA
tubes present in this device, at first a Preisach model (an empirical model based on system
identification) has been adapted to represent the structural response of a single SMA tube. The
modified Preisach model has then been utilized to model the SMA-based vibration isolation
device. Since this device also represents a nonlinear hysteretic dynamical system, a physically
based simplifiecd SMA model suitable for performing extensive parametric studies on such
dynamical systems has also been developed. Both the simplified SMA model and the Preisach
model have been used to perform experimental correlations with the results obtained from
actual testing of the device. Based on the studies conducted, it has been shown that SMA-
based vibration isolation devices can overcome performance trade-offs inherent in typical
softening spring-damper vibration isolation systems. This work is presented as a two-part
paper. Part I of this study presents the modification of the Preisach model for representing
SMA pseudoelastic tube response together with the implemented identification methodology.
Part 1 also presents the development of a physically based simplified SMA mode! followed by
model comparisons with the actual tube response. Part II of this work covers extensive
parametric study of a pseudoelastic SMA spring-mass system using both models developed in
“Part L. Part 11 also presents numerical simulations of a dynamic system based on the prototype
device, results of actual testing of the device and correlations of the experimental cases with

the model predictions.

Key- Words: shape memory alloys (SMAs), pseudoelasticity, hysteresis, Preisach, system
identification, passive vibration isolation, damping, dynamic system

INTRODUCTION

i

HE task of damping and vibration isolation is often

faced with trade-offs. The goal of vibration isola-
tion is commonly accomplished by using an isolation
system with a relatively softer stiffness (Beranek and
Vér, 1992). However, for isolation of heavy loads,
a small stiffness leads to large displacements. This large
displacement obstacle has often been overcome by using
a device having a nonlinear spring with decreasing
stiffness, like a softening spring. Such a device would
have a stiff initial response which becomes less
Stiff as the load is increased, so that the stiff region
of the device’s response supports the initial load and

* Author to whom correspondence should be addressed.
E-mail: dlagoudas(d:aero.tamu.edu

the transmissibility is reduced by the softer stiffness of
the nonlinear spring in the operating range. One of the
problems encountered in vibration isolatiop using a
nonlinear spring is its resonant behavior at Jow excita-
tion frequencies due to softer stiffness in the operating
range. This condition results in the necessity to add
damping to the system, which has the desired effect
of decreasing the resonant response but also degrades
the response of the system at higher frequencies as
shown by Harris (1996) and Inman (2001),

To eliminate these trade-offs one can yse active
materials integrated into smart structures, One such
option is to use Shape Memory Alloys (SMAs) as the
behavior of devices with decreasing stiffness and a
damper is similar to the hysteretic load—deflection
relationship exhibited by SMAs during pseudoelastic
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deformation (Wayman, 1983; Otsuka and Shimizu, 1986)
as discussed later.

Review of Pseudoelastic SMA-based Dynamic Systems
for Damping and/or Vibration Isolation

The SMA pseudoelastic behavior is defined as
inducing detwinned martensite (M) from austenite (A4)
by thermomechanical loading, which then reverts to
austenite upon removal of the mechanical load. The
presence of stress forces austenite to directly form
detwinned martensite, resulting in large macroscopic
strains, which can be fully recovered upon unloading to
the zero-stress state, provided the temperature is kept
above a certain level (Wayman, 1983; Miyazaki et al.,
1997, Otsuka and Wayman, 1999). Figure 1 represents
a schematic of a typical SMA phase diagram, showing
the relationship between stress, temperature, and the
two possible phases of the SMA. Schematic of a typical
pseudoelastic loading path as discussed above is also
shown. The transformation temperatures at the zero-
stress state are represented as M%, MY, 4% and AY
in Figure 1 representing martensitic start, martensitic
finish, austenitic start, and austenitic finish tempera-
tures. In addition to the change in material properties
and large recoverable” strain during pseudoelastic
transformation, there is hysteresis which is an indicator
of energy dissipation during the forward (4 — M) and
reverse (M — A) transformations (Figure 1(b)). This
‘energy dissipation is proportional to the degree of
transformation completed during a loading cycle for
both complete and incomplete, or partial transforma-
tions. These partial transformations are also referred to
as minor loop hysteresis cycles (Bo and Lagoudas, 1999a)
and complete, or full transformations are referred to as

major loop hysteresis cycles. The energy dissipation due
to hysteresis provides an opportunity for SMAs to be
used as damping devices and the change in the stiffness
(represented by Points 1,2, 3, and 4 in Figure 1(b)) of the
material during pseudoelastic phase transformations
provide opportunities for SMAs to be used as vibration
isolation devices. '

The nature of the pseudoelastic effect, as discussed
above and illustrated in Figure 1(b), indicates the
possibility of using SMAs for vibration isolation.
Utilization of SMAs for such applications requires
understanding of the pseudoelastic nonlinear hysteretic
response found in SMAs. Graesser and Cozzarelli (1991)
introduced a model for SMA hysteretic behavior, an
extension of the rate independent hysteresis model
introduced by Ozdemir (1976) to model pseudoelastic
behavior of SMAs for potential structural damping and
seismic isolation applications. A study on the use
of SMAs for passive structural damping is presented
in Thompson et al. (1995), where three different quasi-
static models of hysteresis were reviewed and compared
with an experimental investigation of a cantilevered
beam constrained by two SMA wires. Fosdick and
Ketema (1998), have considered rate dependency by
including “averaged™ thermal effects in the SMA
constitutive behavior. Their constitutive model is based
on dynamics of single-crystal phase boundaries by
Abeyaratne and Knowles (1994), and they have studied
a single degree of freedom (SDOF) lumped mass
oscillator with a2 SMA wire attached in parallel as
a passive vibration damper. Seelecke (2002), in a recent
publication has considered both isothermal and
nonisothermal SMA constitutive response caused by
rate-dependent release and absorption of latent heat
during phase transformations by using a modified
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Figure 1. (a) Schematic of a typical SMA phase diagram with a typical pseudoelastic loading path noted in stress-temperature space;
{b) schematic of the corresponding pseudoelastic loading path in stress-strain space.
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version of the model presented by Achenbach and
Muller (1985). In Seelecke (2002), free and forced
vibrations of a rigid mass suspended by a thin-walled
SMA tube under torsional loading has been considered
under isothermal conditions. For nonisothermal condi-
tions, only free vibrations have been considered and
it has been shown that under a free vibration case for
such a system, isothermal SMA constitutive response
may lead to underestimation of damping and resulting
forces compared to a nonisothermal SMA constitutive
response.

Yiu and Regelbrugge (1995), have investigated the
behavior of SMA springs designed to act as an on-orbit
soft mount isolation system with the added benefit of
precision alignment through the utilization of the SMA
shape memory effect. Yiu and Regelbrugge (1995) have
used a physically based SMA model identified from a
SMA helical spring response. In the work done by Feng
and Li (1996), the dynamics of a SMA bar in a SDOF
spring mass damper system is presented, where the
modified plasticity model presented in Graesser and
Cozzarelli (1991) is used to model the pseudoelastic
response of a SMA bar. Key results of this work

~ includes that the nonlinearity due to phase transforma-

tion leads to complicated dynamics like period doubling
cascade and chaotic motion. Other results include
low resonant frequency for such a system along with
a suppressed peak response. Experimental results have
also been presented for such a system verifying
qualitative predictions of the theory. A recent study by
Lacarbonara et al. (2001) have studied periodic and
nonperiodic thermomechanical response of a shape-
memory oscillator using a modified Ivshin and Pence
(1994) model and ‘considered both isothermal and
nonisothermal conditions under forced vibration and
presented a rich class of solutions and bifurcations
including jump phenomena, pitch fork, period doubling,
complete or incomplete bubble structures with a
variety of nonperiodic responses. Results presented in
Lacarbona et al. (2001) show that for the range
of parameters investigated, the nonisothermal and
isothermal response were similar to each other. Work
presented by Lacarbona et al. (2001) is based on an
earlier work by Bernardini and Vestroni (2002), where
nonlinear dynamic nonisothermal response of pseudo-
elastic shape memory oscillators have been presented.
Softening as well as hardening behavior is noted as the
SMA undergoes partial and full phase transformation
under varying force excitation amplitude, hysteresis
shape, and temperature. Recent work by Collet et al.
(2001) have studied the behavior of a pseudoelastic
SMA (Cu-Al-Be) beam under dynamic loading for
potential vibration isolation applications using a SMA
constitutive model presented in Ranjecki et al. (1992).
Simulations and qualitative experimental observations
presented in Collet et al. (2001) have shown that the

nonlinearity in the SMA beam response is due to the
SMA undergoing phase transformations.

Based on the work done on SMA-based dynamic
systems mentioned in the above publications there is a
need to explore the effects of SMA pseudoelasticity on
vibration isolation by performing actual experimental
correlations and conducting parametric studies under
various dynamic loading conditions on an actual SMA-
based vibration isolation device. In this two-part paper
series, an attempt has been made to address these issues
by developing, simulating, testing, and performing
parametric studies and experimental correlations on a
pseudoelastic SMA vibration isolator. :

SMA Models

To realize the goal of designing and simulating an
active material-based smart structure for vibration
isolation using SMAs, it is necessary to have structural
models that can (a) incorporate response of SMAs and
(b) can be used for prediction and experimental
correlation of dynamic response of such structures.
Along with the SMA models mentioned in the previous
section that have been mostly used for simulating SMA-
based dynamic systems, most of the other SMA
constitutive models available in the literature do not
serve this dual purpose well. Studies of other SMA
constitutive models available in the literature (Tanaka,
1986; Patoor et al., 1987; Liang and Rogers, 1990;
Brinson, 1993; Lagoudas et al., 1996; Lagoudas and Bo,
1999) and their utilization for various SMA-based smart
structure applications reveal that although these models
are quite accurate, they are computationally intensive
and/or hard to implement under dynamic loading
conditions.

Empirical models based on system identification (ID)
have also been used for modeling the response of
different active materials and one of the most popular
models has been the Preisach model. The classical
Preisach model was initially proposed in the 1930s by a
German physicist Preisach (1935) for ferromagnetic
hysteresis effécts and still is the most popular hysteresis
model for ferromagnetic materials. In 1970s and 1980s,
a Russian mathematician Krasnoselskii (Krasnoselskii
and Pokrovskii, 1983) examined and developed the
mathematical properties of the Preisach model and
presented the model as a spectral decomposition of relay
operators. As a result, a useful mathematical tool
evolved in the form of the Preisach model which could
model various hysteretic behaviors found in nature,
without concern for the underlying physical mecha-
nisms. The reader is referred to comprehensive exposi-
tions on the Preisach model by Mayergoyz (1991),
Brokate (1994) and Visintin (1994) for a detailed ana-
lysis and explanation.
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The generality and the computational efficiency of
the Preisach hysteresis model made it applicable to the
development of controller designs (Ge and Jouaneh,
1995; Hughes, 1997) and stability analysis (Gorbet et al.,
1997) of hysteretic ferromagnetic, ferroelectric, and SMA
actuators. Most of the work done to date on using the
Preisach model has been focused toward ferromagnetic
and férroelectric materials, mainly on their application
as actuators. Recently the Preisach model has been
adopted for use in SMA applications. The suitability of
the model for representation of SMA actuator hysteresis
has been tested by Hughes (1997); Hughes and Wen
(1994); Banks et al. (1996a,b,1997) and Webb (1998)
and work has progressed toward adaptive control,
stability analysis, and control techniques (Gorbet et al.,
1997, 1998). As the Preisach model is solely concerned
with system identification and relies on additional
identification experiments in case of any change in
system conditions, Bo and Lagoudas (1999b) have
correlated a thermomechanical model for SMA shape
memory effect response with the Preisach hysteresis

model to avoid the need for additional identification.

I;Iowever, the above mentioned works are focused on
the shape memory effect or the actuator applications
of SMAs, while work done on pseudoelastic modeling
of SMA hysteresis using the Preisach model is limited
and only addressed in few publications. In work done
by Huo (1991), the author describes a complica-
ted extension of the Preisach model for pseudoelastic
response of SMAs using a four-parameter hysteresis
operator for each SMA crystal. The model is compared
to experimental data for an unspecified polycrystalline
material and the technique for identifying the complex
model is not defined in detail and only qualitative results
are given. Ortin (1992) has applied the classical Preisach
model to a single crystal Cu-Zn-Al SMA which has
more profound hysteresis than binary Nickel-Titanium
(NiTi) SMA. Ortin’s work demonstrates that the two
major properties of Preisach model, the minor-loop
congruency and the wipe-out property holds true for
Cu-Zn-Al SMA. The control parameter was stress, the
observed parameter was strain and all the tests were
performed at a constant temperature. A good match
has been observed between simulated output and
experimental data. Song et al. (1999) have also devel-
oped a Preisach model for pseudoelastic polycrystalline
Nitinol SMA wires and shown the -effectiveness
of modeling pseudoelastic SMA response. However,
as the Preisach model is solely concerned with system
identification, any change in the system conditions
require additional identification. In order to correlate
the model with the physical process involved in the
nonlinear hysteretic behavior of SMAs and to avoid
additional identification in case of any change in system
conditions, Lagoudas and Bhattacharyya (1997) have

—_— B R N
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SMA response with the Preisach hysteresis model. Since
a key issue for the application of the model to describe
a specific material is to determine the Preisach weighting
function, Lagoudas and Bhattacharyya (1997), intro-
duced a single crystal hysteresis model, and by using
appropriate averaging, estimated the weighting function
or the distribution function for a polycrystalline SMA.
The work presented in Lagoudas and Bhattacharyya
(1997) and Bo and Lagoudas (1999b) is quite extensive.
However, it leads to intensive computations, is difficult
to implement and does not serve the purpose of having

- an accurate model suitable for design optimization

analysis and simulation of dynamic systems.

In this work, a dynamic system with SMA spring
components is investigated through numerical simula-
tion and experimental correlation. This work is moti-
vated by the need to model and’experimentally validate a
prototype of a SMA-based isolation system (Mayes and
Lagoudas, 2001) and is a continuation of earlier works
(Lagoudas et al., 2001a; Khan and Lagoudas, 2002;
Lagoudas et al., 2002) presented by the authors in recent
conferences. The vibration isolation device presented in
this work consists of layers of preconstrained SMA tubes
undergoing pseudoelastic transformations under trans-
verse dynamic loading. This study is presented as a two-
part paper and Part I of this paper discusses the work
done on modeling the structural pseudoelastic SMA
tube response. SMA tubes are modeled and referred to as
the SMA spring elements in the two-part paper. Outline
of Part 1 is as follows: first a brief description of the
vibration isolation device is presented. The experimental
description is followed by an adaptation of the Preisach
model (Preisach, 1935; Mayergoyz, 1991; Hughes and
Wen, 1994; Ge and Jouaneh, 1995; Gorbet et al., 1998;
Webb, 1998; Khan, 2002) for the structural pseudoelastic
SMA tube response in order to utilize the accuracy,
generality, and computational efficiency of a system
ID-based model, especially for the purpose of design
optimization of the prototype device and performing
experimental correlations.

For the sake of quantifying effects of pseudo-
elasticity on a wide range of system parameters like
SMA operating temperature, hysteresis, structural
stiffness, hardening, softening, and displacement due
to phase transformation, a computationally efficient,
physically based model is also presented. This physically
based SMA model is referred in the text as the simplified
SMA model. Even though the simplified model is
not unique in the literature and can be considered as
a special case of the work done by earlier authors,
its implementation in the form of this work as applied
to vibration isolation has not been observed in the
literature which becomes evident in Part H of this
two-part study.

In this part, in addition to the modified Preisach
madal the need for effective data collection for system
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identification has also been presented by identifying
a Preisach model from the simplified model followed by
comparison of the Preisach model and the simplified
model with the actual pseudoelastic SMA tube response
and conclusions.

Part II of this two-part paper discusses the effect
of the hysteresis and change in stiffness on a dynamic
system by presenting numerical simulations of a generic
pseudoelastic SMA spring mass system followed by
simulations of a system based on the prototype device
utilizing the models developed in Part L Detailed
description of the prototype device along with actual
experimental results are also presented in Part II
followed by experimental correlations of model predic-
tions with the actual results and concluding remarks for
the two-part paper series.

BRIEF DESCRIPTION OF THE EXPERIMENTAL
SETUP AND FINITE ELEMENT ANALYSIS

An experimental device was built to determine the
effectiveness of SMAs when the SMA pseudoelastic
response is used in a dynamic system. SMA tubes were
chosen to investigate the validity of SMA spring
elements as vibration isGlators due to ease in manufac-
turing and availability of SMA tubes. In this device,
layers of thin-walled SMA tubes loaded in a transverse
direction in compression were used to support the mass,
which was subjected to base excitations. The tubes were
acquired from SMA, Inc. and were manufactured from

Rigid frame for attaching
- the isolator to the shaker

stiff mount

Nitinol with a diameter of approximately 6mm and a
wall thickness of approximately 0.17mm. The tubes
used in the experiment were cut to 10mm in length.

A schematic of the shaker configuration with the
SMA spring-mass system attached is shown in Figure 2,
where SMA tubes have been shown as nonlinear
springs. A typical pseudoelastic force-displacement
response for a single SMA tube tested in compression
at 25°C is shown in Figure 3; and as mentioned earlier,
the SMA tube force—displacement response is referred
to as the SMA spring force—displacement response.
1t should be noted that this is the structural response
of a SMA tube, not the constitutive response of the
SMA itself. The mechanical test for a single tube was
performed on an MTS servo-hydraulic load frame with
a TestStar IIm controller under displacement control.
The SMA tube was loaded transverse to the longitudinal
axis in increments up to approximately 70% reduction
in diameter. Various MTS cross-head displacement
loading rates were used ranging from 0.016mm/s to
0.3 mm/s at different temperatures ranging from 25 to
65°C, all of which yielded similar force—displacement
responses. The tube response showed maximum 5%
of increased hardening at higher testing temperatures
and all loading rates as higher stresses are required to
induce the austenite to martensite phase transformation
(Figure 1).

The small change in the force—displacement curves for
different temperatures was attributed to the fact that
only very small parts of the SMA tube were undergoing
phase transformation. To validate this observation, the

Stiff

. Figure 2. Schematic of shaker and SMA spring-mass isolation system as tested.
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Figure 4. Finite slement simuiation of a SMA tube under transverse loading (underformed configuration).

response of a single SMA tube was modeled using finite
element analysis (FEA). Transverse loading similar to
the actual tube loading was applied by compressing
the SMA tube in between two rigid plates as shown in
Figure 4. The following boundary conditions were
considered for the FEA: the plates were constrained
to only move in the vertical direction along the vertical
(x2) axis, the tube at the center along the horizontal
(x;) axis was constrained to move only in the vertical
direction. At the points of contact between the tube
and the rigid plates the tube was constrained to only
move in the vertical direction. An incremental point
load of maximum 160N was applied to the top plate and
the tube finite element mesh was created using 1000
2D-quadratic generaljzed plain strain elements. A user

.

material subroutine (UMAT) was used to model the
SMA constitutive behavior in a commercial FEA
package ABAQUS (HKS, 1997). The SMA constitutive
model used for the FEA is a fully coupled thermo-
mechanical model and has been presented in (Lagoudas
et al., 1996; Lagoudas and Bo, 1999). The reader is
referred to Qidwai and Lagoudas (2000) for explanation
of the numerical algorithms developed for modeling the
SMA constitutive response using UMAT. The FEA was
performed on an IBM Regatta p690 supercomputer
running Digital Unix V4.0E.

Figure 5 shows the tube in an intermediate deforma-
tion state after 80N load has been applied. Figure 6
shows the deformed tube under full 160N loading.
Figure 6 also shows the amount of phase transformation
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Figure 5. Partially deformed configuration of a SMA tube under transverse loading.
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or the martensitic volume fraction of the deformed tube
and illustrates limited phase transformation in small
areas around the contact points between the tube and
the loading plates and at outer and inner surfaces at
points of stress concentrations (magnified in Figure 6).
Results of the FEA shows less than 3% of the tube cross
section undergoing phase transformations with more
than 50% of the material transforming into martensite
mainly around the area shown in the magnification in
Figure 6. An additional 5% of the tube cross section
shows transformation of more than 10% near the tube
and plate contact points.

Based on the experiments and the small amount of
SMA transforming as a result of the FEA, the authors
have concluded that even though locally the increase or

-------------------------------------

Figure 6. Deformed SMA tube configuration with martensitic volume fraction shown for high-stress conceniration areas.

+8.33e-02
+0.00a+00

decrease in the SMA tube temperature due to latent heat
of phase transformation may be significant especially
under dynamic loading conditions, the overall structural
response is not drastically affected. This is justified
because heat conduction and heat convection to and

- from the tube will cause the tube to reach a steady-state

temperature close to the ambient environment at steady-
state dynamic response. And, as it will be shown later in
Part I for a given input excitation loading, as frequency
increases the amount of SMA tube undergoing phase
transformation decreases. Hence, temperature effects
are assumned to be negligible for the SMA tubes used in
this work. -

Details of the vibration isolation test setup along with
experimental results will be presented in Part IT of this
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two-part paper. Figures 2-6 have been introduced to
show the difficulty in efficiently modeling such a SMA
structural response for performing design optimization
of the vibration isolation device along with experimental
correlations and simulation of the dynamic system using
the constitutive models mentioned in the previous
section. Hence a Preisach hysteresis model (system
ID-based model) was identified for the SMA tube
response and will be presented in the following section.

MODEL DESCRIPTIONS

Preisach Model Adaptation for Psendoelastic SMA
Tube (Spring) Response

_ The classical Preisach model as stated earlier can be
expressed as a weighted combination of relay operators.
Figure 7(a) shows a classical Preisach hysteresis relay
operator H,[8(1)]. The relay operator can be explained
by a rectangular loop where « and B correspond to “up”
and “down” switching values of the input respectively
and it is assumed that o > B. The rectangular loop
can also be associated as a simplified representation of
actual pseudoelastic SMA response. Works done by
Webb (Webb, 1998; Webb et al., 1998) have shown that
a Krasnoselskii-Pokrovskii (KP) (Krasnoselskii and
Pokrovskii, 1983) type of hysteresis operator, gives a
better representation of SMA response. The KP type
operator is a smooth hysteretic operator with continu-
ous branches rather than jump discontinuities like the
Preisach operator. However, in this work, the developed
model would be used to solve a SDOF system to
simulate a dynamic system response. As a first step,
a modified Preisach operator was implemented to
account for pseudoelastic SMA spring element response
rather than the KP operator.

The classical Preisach operator output is either +1 or
—1 based on the value of the input. The operator output
and input values are governed by the position of the

H o &1)] H gl 1]
1 T +1 3
o 9
—a | *5 ] T
. |

(a) (b)

Figure 7. (a) Classical hysteresis operator; (b) modified hysteresis
operator. .

system or material response in the planar quadrants.
As shown in Figure 3, the SMA pseudoelastic response
can be represented either in the first or the third
quadrant depending on the SMA clement response
undergoing tension or compression. In this work, the
SMA element response corresponds to SMA tube
undergoing compression under transverse loading.
Therefore, the output value of the hysteresis operator
used in this work has been modified to 0 or 1, as shown
in Figure 7(b).

The mathematical form of the classical Preisach
model is given as

FMAG) = f/ wa, HHoglé(DMdedp (1)
a>fp

where 8(f) is the input and represents displacement for
the SMA spring elements, H,g{8(1)] represents hysteresis
relay operators with different « and g values containing
the hysteresis effects and depends on &(¢). Here @ and 8
correspond to increasing and decreasing values of
displacement. u(a, B) represents the weighting function
in the Preisach model, it describes the relative contribu-
tion of each relay to the overall hysteresis and fSMA(1) is
the output representing force generated by the SMA
spring element and depends on the displacement history.
The double integration presented in Equation (1) can be
interpreted as a parallel summation of weighted relays
as shown in Figure 8.

The weighting function u(a, 8), also referied in the
literature as the Preisach function is described over a
region P, this region is referred to as the Preisach plane,
where each point in P represents a unique relay. Based
on the explanation given on the Preisach Model in
Mayergoyz (1991); Hughes and Wen (1994) and Gorbet
et al. (1998), the weighting function is defined over
displacement (input) range, i.c., the domain of hyste-
resis exists between 8min and dpmax. @ and B represents
increasing and decreasing displacement values respec-
tively, where the upper bound on a is given by émay and
the lower bound on B is given by &min. These two
conditions along with the condition given in Equation
(1), which defines the double integration to exist over a
surface where a > B, restricts P to a triangle. Figure 9

Hop t— we,B)
o Hoo | @B 1,
] . +
: : +
H.up et Na:ﬁ)

Figure 8. Schematic of Preisach model.



Pseudoelastic SMA Spring Elements: Part |

shows the schematic of the Preisach plane adapted for
the work presented in this paper.

It must be noted that, according to Figure 7(b),
H, g[8(#)] can only take the values 0 and 1 (only in
tension or compression of the SMA spring element).
Thus, Equation (1) reduces to

FMAG) = ff u(a, Pdedp @

S*+0)

where St is the region (shaded region shown in Figure 10
where a > ) containing all the relays operators in +1
state at time ¢. The other relays outside the shaded area

o

A
8l
*
Sl
- ——>
8min 8max B
Figure 9. The Preisach piane.
o b <t<t,
amax ’
9 .

Bo
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are in zero state. There is a one-to-one correspondence
between the relays H, p and the points (@, 8) within
triangle area where (a > B).

Figure 10 shows the geometrical interpretation of the
Preisach model, it can be secen that the integration
support area is changing with input extrema. Not all the
input extrema are remembered by the model. The input
maximum wipes out the vertices whose a coordinates
are below this input, and each input minimum wipes
out the vertices whose B coordinates are above this
minimum. This is the wiping-out property of the model
and in essence shows the dependency of output on
previous dominant input extrema. The loading path

" dependency as demonstrated by the pseudoelastic SMA

response is represented by the wiping-out property of
the Preisach model.

As the input increases, a horizontal line moves in the
positive ¢ direction in S, changing all the relay outputs
below the line to +1 state. As the input decreases,
a vertical line moves in the negative 8 direction in S,
changing all the relay outputs to the right of the line all
to O state.

As shown in Figure 10, at the starting point #;, the
input is at zero and all the relay outputs are in zero
(Figure 10(a)) state. As the input increases to a«; at 1y,
a horizontal line moves to ¢ from zero, the outputs
of the relays above the line switch to +1 (Figure 10(b)).
From ¢, to t3, the input is lowered to B, a vertical line
sweeps down to B changing some relay outputs back to
zero (Figure 10(c)). When the input is increased again
to a3, some relays are changed to +1 (Figure 10(d)).

0y t<t<t, 0y t=tg
Oinax Comax [~
o o,

o

B Omax B B, B
) S ° o)
g -
o f——————
B :
5 l |
! | |
I | :
BfA————-— 'r--—-:—'f—_ . :
B | | z 1 N
"ty L 2 L b s t
(e)

Figure 10. Evolution of outputs over the Preisach plane.
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The output £ SMA(y) at each time ¢ is simply the integral
of u(e, B) over S weighted by the corresponding relay
outputs. A constant input will keep the output constant
as well.

Another characteristic property of the classical
Preisach model is called the congruency property.
If the input continues to vary between two consecutive

values, from Figure 10, it can be shown that the output

would vary periodically as well. The two Preisach
model properties mentioned above constitute the
necessary and sufficient conditions for a nonlinear
history-dependent hysteresis to be represented by the
Preisach model. The reader is referred to Mayergoyz
(1991) for further explanations on the classical Preisach
miodel.

IDENTIFICATION OF THE
PREISACH FUNCTION

The Preisach function or the weighting surface for any
hysteretic system, in this case a SMA spring element,
can be easily determined from experimental data. This
experimental data must contain what is defined as the
“first-order transition (FOT) curves. The procedure
is as follows. First, the input &(¢) is brought to its
minimum &min Which is represented as By in
Figure 11(a). Then monotonically increased to some
value «;, as the input is increased from &pi,, an
ascending branch of a major loop is followed, which is
also referred to as a limiting branch in the literature
(Mayergoyz, 1991). f,, represents the output corre-
sponding to a;, the input is now decreased monotoni-
cally to a value B; and the corresponding output is
described as f,,5,. The term first-order describes that
such curves are obtained after the first reversal of input,
note that FOT can also be obtained by first-order
descending curves as well. The corresponding o-f
diagram is shown in Figure 11(b). To derive the
weighting function in terms of FOT curves we introduce
a function F(a, §),

F(er, Br) = fay = fupy : (3)
f A aA
A — - .
. ‘ ay T ,r/
'fllﬂy --------- s+ Er’x’
i / T(ey, B))
Bo BI o, i 60 B‘l JE
(a) (b)

Figure 11. Schematic of identification input.

which represents the change in force as the displacement
changes from a; to B;,. Equation (3) can also be
represented as '

Fle,B)= ff u(a, B)dadp @

T(ay,8)

The weighing function is obtained by taking the partial
derivatives of Equation (4).

F(ay, B1)
- daldﬂl (5)

However, in order to avoid the double numerical
differentiation of F(ay, B1) to obtain u(aj,p;), the
function F(ay, B)) itself, is used to obtain the expression
for the force, rather than Equation (2). This helps in
avoiding amplifying errors in the experimental data and
simplifies the numerical implementation of the Preisach
model. Note that the F(x,B) function can also be
addressed as the FOT function. '

ule, Br) =

DERIVATION FOR NUMERICAL
IMPLEMENTATION

Explicit expressions for force in terms of F(a, )
can be subdivided into subcases based on increasing
and decreasing displacement. For an increasing dis-
placement (Figure 12(a)) , f SMA(¢) is a double integral of
the weighted function u(e, 8) on a region circumscribed
by a set of links whose final segment is a horizontal line
as shown in Figure 12(b). Starting from Equation (2) we
can represent fSMA(7) as

£ = J[ vapria+ [[ wie, e

Si(2) S2(0)

+ [[ ute prdads

Si(n) .
= [F(alsﬂO) _F(ahﬁl)] + [F(QLﬂl)
— Flaa, B2)l + F(8(2), B2)

N |
=Y [F(ex Be1) — Flaw, B+ FG(1), B (6)
k=1

)

BoBiB. O
(2) (b)

Figure 12. Schematic for increasing input.

(
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where the integration is equivalent to summation of
the trapezoids within the S*(f) region, which can be
generalized as shown in Equation (6).

Similarly, for decreasing displacement as shown in
Figure 13(a), fSMA() is a double integral of the
weighted function’ u(x, 8) on a region circumscribed by
a set of links whose final segment is a vertical line as
shown in Figure 13(b). Starting from Equation (2) we
can represent f SMA(y) as

SMA@) = [F(en, Bo) = Flay, B)] + [Flaz, Bi) = Flaz, B2)]
+ [F((!}, ﬂZ) - F(GJ, (8(0)

N-|
= Z[F(“"’ Br—1) — Flax, B

k=1 . )
+[F(an, By-1) — Flan,(3())] M

Equations (6) and (7) give the necessary increasing and
decreasing displacement expression in terms of the
measured FOT data.

f a aa

B N A

]
3
]
3 [ -

y

FIRST-ORDER TRANSITION (FOT) DATA
COLLECTION AND MODEL IDENTIFICATION
In order to perform the first-order transition (FOT)
data collection a pseudoelastic SMA tube (spring
element) was loaded in the transverse direction in
compression. The SMA tube was subjected to 1
range of displacements [0, 4]mm which corresponds to
[Smin, 8max) and represent the lower and upper bound on
displacements. The displacement range was subdivided
into 13 subranges of orders pairs {3;};—, ..n leading to
n/2(n+ 1) FOT data points for all pairs (§;, 8;) with
J < i. Force-displacement tests were performed on an
MTS servo-hydraulic load frame with a TestStar IIm
controller under displacement control at 25°C. The
“displacement input used for the FOT curves is given in
Figure 14 and the corresponding force-displacement
diagram is shown in Figure 15. Figure 16 shows a 3-D
plot of the FOT data obtained from Figure 14.
Theoretically greater amount of FOT curves collected
lead to more accurate hysteresis modeling, however this
amounts to greater memory storage requirements and
lower computational efficiency. Hence a trade-off needs
to be exercised on accuracy compared to computational
efficiency. The effects of choosing less number of FOT
data points are shown in Figures 17 and 18, where
Preisach models identified by using 15 and 45 data
points are shown. This corresponds to subdividing the
input displacement range into 5 and 9 subdivisions with
a difference of 1.0 mm and 0.50 mm respectively. Since
the objective is to have a computationally efficient
model for predicting dynamic response without com-
promising on accuracy and computational efficiency 91
FOT data points have been considered for the final
identification. This was the reason for having the

b

BoBiB, () o @ o, "8 BoB:B,5(t) B
(a) ‘ (b)
Figure 13.: Schematic for decreasing input.
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Figure 15. 'Experimental first-order transition (FOT) curves.
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Figure 16. Experimental first-order transition (FOT) data.

displacement range subdivided into 13 subranges.
Figure 19 shows the experimental data along with the
91 data points used to generate F(c, ) function. The
Preisach model simulated using the F(w, 8) function is
also shown in Figure 19.

FIRST-ORDER TRANSITION (FOT) DATA
NUMERICAL INTERPOLATION

To account for input displacements which do not
correspond to any stored FOT curves, numerical inter-
polation is required to find out the output force. Figure
20 shows a schematic of the Preisach plane, where the
a, B mesh represents experimentally identified FOT data

points. A typical displacement input which does not
correspond to any stored FOT data points is also shown
on the Preisach plane. At first, the interpolation proce-
dures relies on identifying the history of the input e, Bk.
This is followed by identifying the rectangular or
triangular cell to which oy, Bx belong. A linear inter-
polation is used to evaluate F(aoy, 8x). Equation (8)
represents the rectangular cell case, where the coeffi-
cients ri=, .. 4 are obtained for each rectangular cell, by
solving equations of the form given in Equation (8) for
each vertex of the rectangular cell.

l Flag, Br) = r| + raag + r3fx + racy Bi (8)
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Figure 17. Identified Preisach mode! using 15 data points.
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Figure 18. Identified Preisach model using 45 data points.

Equation (9) represents the triangular cell case. where
the coefTicients £, 3 are obtained for each triangular
cell, by solving equations of the form given in Equation
(9) for vertices of the triangular cell.

Flag, Bi) = t + ey + 138 &)

Figure 21 shows a random displacement input which
does not contain any identified FOT data points, the
corresponding response using the calibrated Preisach

model using 91 data points (see Figure 19) is shown in
Figure 22. .

Physically Based Simplified SMA Model for
Pseudoelastic SMA Tube Response

In addition to accurately modeling and experimen-
tally validating the SMA-based vibration isolation
device mentioned earlier, another goal of this study
was to numerically explore the effects of pseudoelasticity
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Figure 20. Numerical interpolation schematic.

on vibration isolation under a wide range of dynamic
system conditions. To explore a broad range of system
conditions like excitation amplitude, mass, number of
SMA spring elements and initial conditions an efficient
and qualitative representation of the SMA spring
" element force—displacement response with flexibility to
change structural stiffness, hysteresis width, and operat-
ing temperature was needed. Therefore to aid in
performing parametric studies a physically based
simplified SMA model has also been calibrated based
on the pseudoelastic SMA tube structural response and
the following subsection discusses its development.

The simplified model is capable of predicting the
behavior of a SMA spring element at temperatures above

the austenite finish temperature, (4Y), the temperature
at which the reverse transformation from martensite to
austenite is complete. Additionally, this model is
displacement driven and is dependent on the loading
history to correctly predict the forward and reverse
transformation behavior and the minor loop behavior of
a SMA structure. The basis of the model is the
assumption that the relationship between force and
displacement in a SMA structure at temperatures above
AY can be represented by a series of linéar segments.The
model is based on earlier work done by Lagoudas et al.
(2001b) and the following description extends the work
presented in Lagoudas et al. (2001b) to account for force—
displacement response of a SMA tube loaded in the
transverse direction and modeled as a spring.

From a typical pseudoelastic force-displacement
compression test (Figure 23) of the SMA tube used in
the prototype device, performed at a temperature
greater than AY, the equivalent spring stiffness of the
SMA structure in austenite (K,) and martensite (Ka)
can be obtained as well as the maximum value of
transformation displacement (8%,,). As mentioned
earlier, the force—displacement test shown in Figure 23
is for a SMA tube used in the prototype device, which is
loaded in compression in a transverse direction and
should not be considered as SMA material response.
Pseudoelastic SMA material response shows higher
material stiffness in austenite compared to martensite.
However, for the structural response shown in Figure 23,
as the displacement increases, even though parts of
the tube are undergoing phase transformation, due to
the deformed geometry of the tube, the equivalent
spring stiffness of the tube in the martensitic phase (Kas)
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Figure 22. Calibrated Preisach mode! force-displacement response for random displacement input (Figure 21).

is greater than the equivalent spring stiffness of the tube For representation of force-displacement pseudo-
in the austenitic phase (X,). Through the use of a elasticity of a SMA structure, in this case SMA tubes.
Differential Scanning Calorimeter (DSC). the tempera- a structural force~temperature diagram describing the
tures at which transformation occurs under zero stress relationship between force, displacement, and the spring

can be determined. element phase can be constructed by one DSC
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Figure 23. Pseudoeiastic force-displacement response of a SMA tube with equivalent spring stiffness of austenite phase, equivalent spring

stiffness of martensite phase, and transformation displacement labeled.
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Figure 24. SMA spring element force-temperature diagram with pseudoelastic loading path.

measurement and one pseudoelastic response test, as
shown in Figure 24. The assumption is made that
the lines marking the transformation boundaries are
parallel, which strictly speaking is not necessarily
correct but for the purpose of this model it does
allow for a simplified representation of the pseudo-
elastic response. In this case, the zero stress transforma-
tion temperatures and the slope of the transformation

boundaries are chosen based on the pseudoelastic res-.

ponse and the DSC tests, but modified slightly so that

the pseudoelastic force—displacement relationship is
preserved for the structure. Another simplification is
in the selection of the transition points between elastic
loading and transformation. Due to the nonuniform
stress state and polycrystalline nature of SMA tubes,
some areas of the material begin to transform before
others, resulting in the smooth transitions seen in
Figure 23. However, the simplified model presented
here requires specific transition points (Points 1-4 in
Figures 23-25) at which to begin and end the forward
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and reverse transformation, hence, points are chosen so
that the pseudoelastic force-displacement relationship is
preserved. Once the simplifications are made and the
appropriate constants are chosen, the simplified model
utilizes the force--temperature diagram (Figure 24) to
create a piecewise linear representation of the pseudo-
elastic response of the SMA spring (tube) element shown
in Figure 23.

From the force-temperature diagram, and given that
the temperature of the SMA is known and constant, it is
possible to calculate the forces at which'the forward and
reverse transformations begin and end from Equation
(10) where f* is the force, C is the slope of the trans-
formation boundary in the force-temperature plane,
T is the temperature, and T, is the zero-stress transition
temperature determined from the DSC results for the
respective transition.

[=CT-T) (10)

Additionally, the constitutive relation for SMA can be
modified to yield Equation (11), where K, is the
respective stiffness of either austenite, martensite, or a
mixture of the two phases, § is the total applied
displacement and §" is the transformation displacement
of the SMA. Transformation displacement for a force-
displacement model is equivalent to the transformation
strain for a stress—strain model.

f=K/(8-35 (11)

Given that the material state is assumed to be known at
the beginning and end, of transformation for both

forward and reverse transformations, one can calculate
the displacement at which transformation will occur.
Using this data, one can construct the following force-
displacement diagram as shown in Figure 25 using
only the material parameters mentioned above. For
this simplified model of pseudoelastic loading, the
transitions delineating the beginning and end of forward
and reverse transformation are dependent only upon the
ambient temperature and the material parameters,
including the zero load transition temperatures, the
transformation displacement and the stiffness of the two
phases. For the beginning of the austenite to martensite,
or forward, transformation (Point 1 on Figure 25), the
corresponding force and displacement are calculated
from Equations (12) and (13).

fus = C(T — M") (12)

C(T — M%)

X, (13)

81“.\' =

For the end of the forward transformation (Point 2), the
corresponding force and displacement are calculated
from Equations (14) and (15).

fur =C(T - MY) (14)

(T — M™)

S = (13)
if Ky
For the beginning of the martensite to austenite, or

reverse, transformation (Point 3), the corresponding
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force and displacement are calculated from Equations
(16) and (17).

fas=C(T = 4%) (16)
_ C(T - A()s)
0us = ~Kn (17)

For the end of the reverse transformation (Point 4), the
corresponding force and displacement are calculated
from Equations (18) and (19).

far =C(T —4Y)

(T - 4AY)
Ky

(13)
Sur = (19)

Assuming piecewise linear response and combining ali
of this information together will result in completely

determining the force-displacement response of a .

SMA for a full loading induced transformation cycle,
as shown schematically in Figure 25. The effects of
latent heat due to the rate-dependent release and absor-

ption of heat during pseudoelastic phase trans-

formations can be explicitly accounted for by choosing
different slopes and transformation points for the piece-
wise linear simplified SMA model.

MAJOR LOOP RESPONSE
To correctly predict the force-displacement response

of a SMA, the loading path for full transformation,

or the major loop, must be modeled. For the simplified
SMA model, this is accomplished by assuming that both
the transformation displacement, 8", and the force,
f; vary linearly during transformation and that the force
corresponds to displacement in a linear manner when
transformation is not occurring. As a result, the SMA
material can be modeled as a series of straight lines in
force-displacement space, where the intersection of
these lines correspond to the transition between elastic
loading and transformation for forward and reverse
transformation. This can be illustrated schematically,
as shown in Figure 25. For elastic loading in the
austenite region (4 — 1), prior to the beginning of
forward transformation, the transformation displace-
ment remains zero and the force is directly related to the
displacement. This is explicitly stated in Equations (20)
and (21).

=0 (20)

SMA K8 @n

For forward transformation, the region between Points
1 and 2, the transformation displacement varies linearly

between zero and the maximum value of transforma-
tion displacement, 8, . Additionally, the force level
also varies linearly between the force levels correspon-
ding to the beginning and end of transformation.
Mathematically this is shown below in Equations (22)
and (23).

t 8- 51”.7 )

a = 8 —_— 2
sma)((st —_ sMS (2 )
MA = fge + chf = futs) (23)

At displacement levels above the martensite finish level,
" ‘the region after Point 2, the force again relates linearly

to the dlsplaoement and the transformation displace-
ment remains at a constant value equal to 87,,. This
relation remains true even after the onset of unloading
until the beginning of reverse, transformation begins
(Point 3) as shown in Equations (24) and (25).

8 =%, (24)

FMA = fup + Ku(® = 3uy) (25)
After the beginning of reverse transformation (Point 3),
and before the transformation to austenite completes
(Point 4), the transformation displacement again varies
linearly, this time between &%, and zero. Likewise
the force varies linearly between the value at the start
of reverse transformation and the value at the end
of transformation. This is shown in Equations (26)
and (27).

=g, - (_éﬂ__a__) (26)
S4s — sAf
SMA &
M = fop + ——fas — fay) 27

At the conclusion of reverse transformation, the
transformation strain is again zero and the force again
varies linearly with the displacement, as shown in
Equations (20) and (21).

The force—displacement history for a major loop
loading path for the simplified model is the same as
shown in Figure 23.

The major loop SMA pseudoelastic schematic shown
in Figure 25 can also be represented by using linear
springs and slip or frictional elements and is referred
to as mechanism-based nonlinear hysteretic response.
Correlations between the simplified SMA model and
mechanism-based nonlinear hysteretic response are
presented in Appendix A for completeness.
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MINOR LOOP RESPONSE

To accurately model SMAs for a particular
application, it becomes necessary to mode! the minor
loop loading cycles. Minor loop loading cycles are
those loading cycles that do not result in complete
transformation from austenite to martensite and back
to austenite. From inspection of Figure 26, which
illustrates a minor loop displacement loading path,
it becomes clear that in order to model this behavior,
some modifications must be made to the equations
above to account for this incomplete transformation.
As a result of the simplicity of this model, the
modifications are easy to implement. The first issue
that must be dealt with is the dependence of the current
SMA structural behavior on the history of loading
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Figure 28. Displacement path for minor loop loading.
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of the SMA component. This can be accomplished by
storing the maximum and minimum values of force,
displacement, and transformation displacement for the
previous loading cycle. The second issue to be dealt with
is the modification of the points in force—displacement
space that initiate the beginning of forward and reverse
transformation. The third issue relates to the stiffness of
the SMA structure. As the SMA structure transforms
between austenite and martensite, the stiffness of the
structure changes between the structural stiffness of each
phase. The stiffness at any given point during transfor-
mation is calculated using a rule of mixtures on the
compliance (Reuss bound). _

Figure 27 depicts a minor loop case. When loading
from zero force in the austenite phase, the equations
are the same as for the initial elastic loading and the
forward transformation. However, for a minor loop
loading path, the loading is reversed prior to completion
of forward transformation at point R. At this point
the maximum values of force, displacement, and trans-
formation displacement are recorded, as they will be
used in subsequent calculations. As unloading begins
from point R to 3, initially there is no transformation, so
that the unloading occurs elastically but at a stiffness
that is neither the austenite stiffness nor martensite
stiffness. Unloading occurs elastically from the maxi-
mum transformation point and the slope is determined by
maximum degree of transformation obtained. For this
portion of the force-displacement relation, the unload-
ing stiffness, Kz, and the force are calculated as shown
in Equations (28) and (29) where 8%, fr, and 8z are
the values of transformation displacement, force, and

minor

Ms

A\ 4

minor
As

. Figure 27. Force—displacement path for minor loop loading.
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displacement recorded when the loading path changed
directions.

Ky K4
Kr= 28
R=5/sn (K4~ Ky) + Ku (28)
fMA=fr+KrG~82) (29

The transformation strain remains constant for this
section of the loading path, since the unloading is elastic
and no transformation occurs. As the SMA structure
continues to unload, the path it is following will
eventually intersect the line for major loop reverse
transformation (Point 3), where reverse transforma-
tion begins for minor loop loading paths. Due to
the incomplete forward transformation, this point is
different from the (f4s,845) pair denoting Point 3 in
Figure 25 and is defined by Equations (30) and (31).

. 8% :
TImOr = 54 +F&‘(8" —845) (30)
max .
in ath
A:;u or =fAs + 8_“ UAS —fAf) (31)
max

As this point is reached, reverse transformation begins
and the following equations will determine the values
of transformation displacement and force from Point 3
onwards.

minor
‘SA.\' -8

8[" — 8:;“ — 8::;&)( 8’};;“‘” — 8Af (32)
SMA & mi
P = Ot — fur) (33)
max .

As the structure continues to unload, the force will
decrease and the transformation displacement will go to
zero as the material approaches Point 4 where reverse
transformation ceases. At this point the SMA structure
will be in austenite again and will unload elastically to
zero load. Now, if the structure does not unload entirely
into austenite, but again changes the loading direction
and begins to load again, the force, displacement, and
transformation displacement at this point must again be
recorded. This point is shown as point F in Figures 26
and 27. As the material begins to load from point F to 1,
it again loads elastically at a stiffness determined by
the minimum degree to which transformation had
progressed. The stiffness and force level are given in
Equations (34) and (35) where 8%, fr, and 8§f are the
values of transformation displacement, force, and
displacement recorded when the loading path changed
directions.

KuK
Kr MR 4

(34

= 50/8%, (K4 — Kar) + K

FSMA = fr 4 Kg(8 — 8F) (35)

From this point the SMA structure loads elastically
until this loading path intersects with the forward
transformation path for major loop loading (Point 1).
This point is calculated in a similar manner to that
used in the calculation of the beginning of reverse trans-
formation and is again based on the intersection of the
major loop loading path and the minor loop loading
path. The formulas defining this point are given in

‘Equations (36) and (37).
, 8t
rbrg:of = SM, + 8" (5Mf - SM_\-) (36)
max
minor ‘sg |
s =Sus + -gn—-(fo —fms) €Y)]
max

From this point, force and transformation displacement
for forward transformation are calculated in a manner
similar to that used in the calculation of force and
transformation displacement for the reverse transforma-
tion. The equations are as follows:

g _gr S
™ B — S

. (3%)

str

tr
‘Sma.x

SMA = fpinot 4w =St O9)

The continuation of loading along this path will result
in complete transformation to martensite as described
in the major loop section. A change in loading direction
prior to complete transformation will result in addi-
tional minor loops and the preceding equations are
applicable. Figure 28 shows a typical displacement path
that would result in minor loop loading. The resulting
force-displacement response is shown in Figure 29.

CALIBRATION OF THE PHYSICALLY BASED
SIMPLIFIED SMA MODEL BASED ON THE
PSEUDOELASTIC SMA TUBE RESPONSE

In order to calibrate the simplified pseudoelastic SMA
model presented here, the DSC data was combined with
the results of a pseudoelastic compression test shown in
Figure 24. As mentioned earlier, the mechanical test was
performed on an MTS servo-hydraulic load frame witha
TestStar IIm controller under displacement control and
the DSC analysis was performed using a Perkin Elmer
Pyris 1 Differential Scanning Calorimeter. The 10mm
jong, 6 mm Nitinol SMA tube with a wall thickness of
approximately 0.17mm was loaded transverse to the
longitudinal axis in increments up to approximately
70% reduction in diameter. Tests were performed
at different temperatures ranging from 25 to 65°C,
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Figure 30. Force vs. displacement response of SMA compression spring element (tube) compared with the calibrated simplified SMA model.

all of which yielded similar results. The tube response

showed maximum 5% of increased hardening at higher

testing temperatures as higher stresses are required to
induce phase transformations (Figure 1). The small
change in the force—displacement curves for different
temperatures was attributed to the fact that only some
parts of the SMA tube were undergoing phase trans-
formation as discussed in *“Brief Description of the
Experimental Setup and Finite Element Analysis™ (see
Figure 6).

Experimentally determined force—deflection behavior
for the SMA spring, along with the output for the
physically based SMA model as calibrated for use in this
work, is shown in Figure 30. In order to calibrate
the model for the SMA spring, it was necessary to
implement the assumptions listed earlier concerning the
beginning and end of transformation for both force
displacement space and force temperature space. From
the experimental data it is evident that the slope of the
transformation regions in force temperature space are
not parallel, however for this work a median value of
_ 5.7N/°C was chosen. Additionally, it is obvious that for
the SMA tube, that there is not a single point marking
the beginning or ending of any of the transformation
regions so it was again necessary to choose a point that
would allow for the best representation of the force-
displacement response. As a result of these assump-
tions it was then necessary to modify the zero load
transformation temperatures slightly from the values
measured during the DSC tests. The values used to
calibrate the model are shown in Table | and as shown

Table 1. Experimentally determined

parameters for SMA model.
MY =12.7°C Ka =40kN/m
MO =17.9°C Ky = 150kN/m
A% =17.9°C 8., =2.95mm
A% =21.5°C C=5.7N/m
T=25C .

in Figure 30, they do provide a good representation of
the experimental data.

Preisach Model Identiﬁcation Using Physically Based
Simplified SMA Model

The unique capability of the Preisach model to
simulate any hysteretic behavior based on identification
acted as a basis to identify a Preisach model from the
simplified model. The main motivations behind this

.approach was (a) to determine the need for effective

data collection for system ID-based Preisach hysteresis
model and (b) to compare the differences in solving a
SDOF vibration isolation system presented in Part IT of
this two-part paper series using the simplified model,
the Preisach model identified from the experimental
data and the Preisach model identified using the sim-
plified model. The same displacement input as shown in
Figure 14 is considered for identifying the Preisach
model from the simplified model. The same 91 displace-
ment data points has been considered as shown in
Figure 19 and the identified mode] is shown in Figure 31.
The response of the simplified model for the same input
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is also shown in Figure 31. Note that the data points
chosen for the experimental identification are not
sufficient to capture the response of the simplified
model. The difficulty in capturing the response of the
simplified model is due to the sudden change in the
force—displacement response corresponding to begin-
ning and ending of phase transformation. This requires
either additional data points or selecting different data
points than the initial ones. This amplifies the need for
proper data point selection for the Preisach model apart
from the accuracy and computational efficiency conside-
ration mentioned in “‘Preisach Model Adaptation for
Pseudoelastic SMA Tube (spring) Response™. Since this

identification was done just to verify the simulation
results presented in Part IT and not to use the Preisach
model identified from the simplified model as the model
for simulations, hence no modifications were done.

Medel Comparisons

Figure 32 shows the comparison of the Preisach
model and the simplified model with the actual tube
response. It can be seen from Figure 32 that the Preisach
model can accurately simulate the response of SMA
tubes compared to the simplified SMA model. The
simplified model relies on specific transformation points
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for denoting beginning and ending of phase trans-
formation whereas the Preisach model can easily depict
the gradual phase transformation. Hence, this makes the
Preisach model ideal for simulating an actual system
consisting of nonlinear hysteretic components with-
out sacrificing computational efficiency. However, the
Preisach model is limited by the need for repeated iden-
tifications in the case of any changes in the structural
response of such SMA components and has no physical
correlation with SMA constitutive parameters. The need
for repeated identification can be remedied by using
adaptive Preisach models; however this would lead to
decrease in computational efficiency. On the other hand
the simplified model, since it is physically based can
easily account for changes in the structural response of

-SMA components and is ideal for performing qualita-

tive parametric studies by varying the phase transforma-

'tion points and changing the structural stiffness,

hysteresis width, operating temperature, and transfor-
mation displacement.

CONCLUSIONS

In Part I of this work, a physically based simplified
SMA model suitable for SMA-based smart structures
has been presented, where the structural response is
predominantly influenced by SMAs. The simplified
SMA model is computationally less intensive, can be
calibrated very easily from simple physical tests. Hence
it can be used for preliminary design and analysis of
complex SMA-based smart structures. Drawbacks of the
simplified model are that it does not capture the gradual
phase transformation of the structure and the effects of
latent heat can only be accounted by explicitly choosing
different slopes and phase transformation points for the
piece-wise linear simplified SMA model. Whereas, in
coupled thermomechanical models the latent heat is
accounted by an appropriate energy balance equation
directly coupled with the constitutive response.

A Preisach model for force~displacement response of
pseudoelastic SMA tubes has also been presented in
Part I of this work. The classical Preisach operator was
modified for this study to minimize the implementation
effort. The adopted identification implementation
method helped in mitigating noise amplification in the
experimental identification data and simplified the
implementation of the Preisach model. The methodol-
ogy followed made the Preisach model an efficient,
useful, and an accurate tool for simulating the dynamic
system motivated from the prototype device consisting
of SMA tubes. The need for effective identification using
the Preisach model has also been emphasized by
performing an identification using the simplified SMA
model. It has been shown that the Preisach model can

M. M. KHAN ET AL.

accurately simulate the response of SMA tubes com-
pared to the simplified SMA model.

Part II of this two-part paper will discuss the effect of
the hysteresis and change in stiffness on a SMA-based
dynamic system by presenting numerical simulations of
a generic pseudoelastic SMA spring mass system
followed by simulations of the system based on the
prototype device utilizing the models presented here.
Detailed description of this device along with actual

~ experimental results will also be presented in Part II

followed by experimental correlations of model predic-
tions with the actual dynamical tests and concluding
remarks for the two-part paper series.
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APPENDIX A

Correlation of Physically Based Simplified SMA Model
with Mechanism-based Hysteretic Nonlinear Response

The major loop SMA pseudoelastic response shown
in Figure 25 can also be approximated by using linear
springs and slip or frictional elements. A schematic
shown in Figure 33 represents one such representation
of SMA pseudoelastic response using linear springs and
slip or frictional elements for loading (L) and unloading
(U) behavior. The reader is referred to similar models
with different complexity levels using linear springs and

020

0<0

5As

5 fSMA
]

Af

177

(b)

Figure 33. Representation of pseudoelastic SMA spring behavior
using linear springs and slip elements during (a) Joading and
(b) unloading conditions.
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frictional elements for modeling SMA pseudoelastic
behavior in work done by Malovrh and Gandhi (2001).
However, the work presented by Malovrh and Gandhi
mainly deals with nonlinear hysteretic response without
considering the SMA response after completion of full
phase transformation.

In this section, correlations between the simplified
SMA model and mechanism-based hysteretic nonlinear
response is presented to show that physically based
SMA models and phenomenological mechanism-based
models found in the literature (Malovrh and Gandhi,
2001) can be derived from each other.

A linear spring with stiffness XF shown in Figure 33(a)
represents the elastic behavior of the pseudoelastic SMA
spring when the SMA spring is in complete austenitic
phase and undergoing loading. The corresponding
governing equation expressing the relationship between
force and displacement and K, (Figure 25), is given
below

fSMA K8 (40)
K4=KF (C3))

The onset of forward phase transformation (Point 1 on
Figure 25) can be expressed by using a slip or a frictional
element in series with a linear spring. The displacement
corresponding to onset of slip is given by 8. The linear
strain hardening behavior during phase transformation
is expressed by using a linear spring with stiffness K5
in parallel with a slip element (Figure 33(a)). The force—
displacement relationship during Points 1 and 2 (see
Figure 25) is given by Equation (42) and the correlation
of K} and K5 with K, (Figure 25) is given by
Equation (43)

SSMA = furs + Kot = 814y) 42)
KEKE
Kiy = KTLIT%E 43)

The end of forward phase transformation and the
strain hardening behavior seen afterwards (Point 2 on
Figure 25) can be represented by using a linear spring
with stiffness K5, in parallel with a slip element with slip
displacement 4dyy, acting against the displacement
direction as shown in Figure 33. Corresponding force-
displacement relationship and correlation of Kf.K}.
and Kf;, with K, is given by Equations (44) and (45).

FIMA = fur + Kur(8 — 8ar) 44

Lyl gL
Kl KIIKIII

= (45)
KiiKfy + Kr Kiiy + Kf Ky

Ky

Figure 33(b) shows the schematic for unloading condi-
tions. The slip element with corresponding slip displace-
ment limit of 8, during loading can be recalibrated to a
slip displacement of 84, for unloading conditions. This
corresponds to Point 3 on Figure 25 and represents start
of phase transformation back into the austenitic phase.
The force—displacement relationship prior to reverse
phase transformation is given by Equation (46), where
as, the relationship between K, K, and K, with K, is
given by Equation (47).

FIMA = £+ Kag(8 — 845) (46)
KVYKYKY
Ky = ki 4
KUKG, + KUKY, + KVKD “7)

The slip element with slip displacement of &y, during
loading can be recalibrated to a slip displacement of
3.4r for unloading conditions. This corresponds to Point
4 on Figure 25 and represents end of phase transfor-
mation back into the austenitic phase. The force-
displacement relationship during the reverse phase
transformation is given by Equation (48), where as the
relationship between K and KJ with K, 4 is given by
Equation (49).

fMA = fuf + Kt a8 — S45) (48)
= —t 4
Ku—a KV + K} ¢ 9.)

After the end of reverse phase transformation the force
varies linearly with displacement proportional to KV
and the relationship is same as shown in Equations (40)
and (41).

Equations (40){(43) represent SMA major loop
response based on hysteretic nonlinear behavior using
a combination of linear springs with slip elements.
Following a similar approach, expressions representing
minor loop response can also be derived. However,
since the purpose was only to show a correlation
with mechanism-based models this task has not been
performed.

NOMENCLATURE

a = increasing values of displacement
B =decreasing values of displacement
8 =spring displacement
84 =spring displacement denoting end of 4 « M

transformation
8% =spring displacement denoting start of 4 « M
transformation .
84/ = spring displacement denoting end of 4 — M
transformation



85 = spring displacement denoting start of A-» M
transformation .
5 = transformation displacement
Smax = lower bound on displacement
8min = upper bound on displacement
u = weighing function in the Preisach model
o =stress
A =austenite phase .
AY = austenite finish temperature at zero stress
A% = austenite start temperature at zero stress
f4f =force denoting end of 4 M transformation
f45 =force denoting start of 4 < M transformation
M =force denoting end of 4 = M transformation
M3 =force denoting start of 4 = M transformation
fSMA = force exerted by SMA spring
H =hysteresis relay operators
K 4 =stiffness of austenite phase
Ky =stiffness of martensite phase
M = martensite phase
MY =martensite finish temperature at zero stress
MY =martensite start temperature at zero stress
T =temperature
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